Frazer YDNA: Part 4

In the previous post, I wrote of how our Frazer testers Jonathan and Paul matched in their YDNA. This match, based on STRs, was not perfect but was a genetic distance of 3 at a level of STR testing of 37 markers. Perhaps more importantly, Jonathan and Paul both had a DYS388 Marker value of 10. This places them solidly in SNP group called L664. Here is the nice R1a Chart I had shown in Part 2 of the Frazer YDNA series from the R1a Project Page.

719235

The L664 SNP group is on the left side of the Chart in a medium blue color. This gets us to about 3,000 b.c. Now according to the L664 Administrator:

In our FTDNA R1a1-project only 5% belongs to R1a1-CTS4385 and therefor 95% belongs to R1a1-Z645.Probably R1a1-CTS4385 is also over-represented in our FTDNA R1a1-project, because many participants of FTDNA are American emigrants who have their roots mainly in NW-Europe and not so much in eastern Europe and India, where the majority of R1a1 lives. 
Now see the Chart above. CTS4385 is directly above L664. Most of the Haplogroups are to the right of CTS4385. This means that the Frazers are rare birds within their R1a YDNA classification. And, R1a is not the most common Haplogroup to begin with for people of the Northwestern Atlantic area.
More on L664?
Yes. More from our most helpful Dutch Administrator, Martin. This is what he wrote about Jonathan (which applies also to Paul):
We expect you will not belong to the largest subgroup under R-L664, which is subgroup 2.D (classified by SNP YP282) and also not to subgroup 2.A (classified by S3477) and also not to subgroup 2.C (classified by YP358).
So most probably you will belong to subgroup 2.B which is more or less a restgroup under S2857.
For this subgroup S2857 there is on the moment no relevant SNP’s which you can order separately.
So If you want to know more about your exact position in the halpotree of R1a you need to order the BigY test.
Here is a portion of the L664 Tree, which is a portion of a much larger tree.
L664 Structure
This is analogous to the left side of the Chart above (Northwestern Europe/Germanic). Martin says we Frazers are not likely part of the popular YP282 group. He doesn’t say how he knows that. Mysterious. YP282 is third from the right on the bottom row. For the same mysterious reason, Martin casts doubt on the Frazers being YP358 or S3477. So Martin seems to eliminate most of the above tree and places us somewhere under S2857 (Is that YP943?)
L664 Structure

 

The groups that Martin mentions above (i.e. 2.A, 2.C, 2.D) appear to be different L664 groups that the administrator has put Y Testers into based on the combination of STR values. Lastly, he recommends the Big Y test. This is the ultimate dream test to find out where you are on the Y Tree. This would further Frazer DNA research and help many others who are in this area of L664. However, at over $400, only the hard core YDNA researchers will likely pay for that test.

Are Our Frazers from County Mayo or Arberdeenshire?

Even though we crossed out the S3477 above, Martin had a subsequent theory in a follow-up email. His theory is that the Frazers are indeed S3477 and related to the County Mayo Prendergasts. These Prendergasts supposedly were in the County Mayo area of Ireland since the 1200’s along with the Normans. They also are L664 and apparently have some other STR similarities. I sort of doubt Martin’s theory based on our own Frazer traditions. However, Martin says, “You can also order 67 STR-markers and when your DYS617=13, then you also know you belong to this subgroup S3477.” I’m guessing that DYS617 will not be lucky 13 for Jonathan and Paul, but we’ll see. I’m willing to keep an open mind. Both Joanna and I have ordered additional STR testing for Jonathan and Paul. That will tell whether or not we are in subgroup S3477.

The County Mayo, IRE Norman Frazer connection does not have the right ring to me. Would any Frazer descendants vote for that option? I prefer the Aberdeenshire tradition. According to our Aunt Mabel researcher, the Frazers were in Keith in the late 1100’s. Now that’s a ways back. She thinks that not long after this time, they made their way down to Stirling and over to Ayrshire before they traveled to Ireland. Here is a map for some of Jonathan’s YDNA matches:

Part of Jonathan's YDNA Match Map
Part of Jonathan’s YDNA Match Map

These are 3 of the 4 matches that show up on Jonathan’s YDNA match map. The other match was Chisholm in North Carolina. Without a European location, that match location is unhelpful and inconclusive. I’m not sure why Paul doesn’t show up on the map. At any rate, I was struck by the number of YDNA matches that Jonathan has in this Northeastern part of Scotland at the 37 STR level. It seems more than coincidental. The marker in the middle is a Grant. The other two do not have their names listed. Note that Keith is in the area to the East of the middle marker. This is the place where Aunt Mabel had our first Frazer.

Simon of Keith

I’m not thoroughly endorsing the old research, but it is interesting that there can be some parallel conclusions between it and modern DNA testing. Also note that this would be about as early as there would be surnames. According to Scotlandspeople.gov.uk,

Norman influence filtered into Scotland after their invasion of England, and was actively encouraged by Scottish kings. Anglo-Norman nobles acquired grants of land around Scotland and introduced the feudal system of land tenure. For example, Robert The Bruce was a descendant of Robert de Brus who fought with William the Conqueror at the Battle of Hastings. Bissett, Boyle, Colville, Corbett, Gifford, Hay, Kinnear and Fraser are all originally Norman names, which first appeared in Scotland in the 12th century. Menzies and Graham are recognised Anglo-Norman surnames also first seen in Scotland at this time. 

Paul’s Other YDNA Matches

There are a few odd things about Paul’s matches. First at the level of testing that he did (37 STRs), he only has 4 matches where Jonathan has 13 matches. My unsupported theory on this is that the James Line as seen in Jonathan has more of the original Frazer STR type and the Archibald Line as seen in Paul’s results branched off or mutated away from the original STR type. Here are Jonathan’s 13 matches at the 37 STR level of testing:

Jonathan's YDNA 37 Matches

I don’t show it, but Jonathan has:

  1. One match at GD=1
  2. Two matches at GD=2
  3. Five matches at GD=3, and
  4. Five matches at GD=4

William Frizelle is at the top of both lists. However, Jonathan has a GD of 1 to him, where Paul has a GD of 3. That means that genetically, and without taking into effect the speed of mutation of the individual STRs, Jonathan is more closely related to Frizelle than our Frazer tester Paul. It does not mean that he is actually more closely related. This is due to the fact that DNA can mutate whenever it wants. Apparently it wanted to more between Jonathan and Paul than between Jonathan and Frizelle. Also, there is a phenomenon called back mutation which can confuse the issue. If a line had a specific STR value of say, 10 and it mutated to 11 and then back to 10, there would be 2 mutations, but it wouldn’t be easy to detect and it would look like there was no mutation at all. I’m not saying that is what happened here, or that it is common, but it is possible.

Obviously, Jonathan and Paul match each other. Other than that, Latham and Chisolm are on both lists. In additions, they have a GD of 4 on both lists.

Another interesting thing is that Paul does not show a match at this level with Stuart/Stewart or the many Grants that Jonathan matches.

Matches at the 25 STR Level

FTDNA posts matches at the different levels of YDNA testing. They turn out to have different matches in some cases, due to the specific STRs tested. At the 37 level, above, the cutoff for matches is a GD of 4. At the 25 level, they only allow a GD of 2 or less. Here, the differences between Jonathan’s and Paul’s matches are even greater. Jonathan has 20 matches and Paul has, again, 4. However, Jonathan’s 1st 4 matches match Paul’s 4 matches. At this level, Jonathan has a perfect match with Frizelle, where Paul has a GD of 1 with Frizelle. This tells me that Frizelle must be L664. Remember that a DYS388 Marker value of 10 means one is an L664. DYS388 is the 8th value. A 25 STR test includes the 8th value. A perfect match between Jonathan and Frizelle means that Frizelle must have a DYS388 Marker value of 10.

By the way, I wrote to Frizelle asking if he had a 10 at that marker level. It would be good to hear from him, but even if I don’t we now know he is L664. At this level of matches, Latham drops out (although, he still matches Jonathan). The common match that is replaced does not have a most distant ancestor, but the tester’s last name is listed as Plate.

Way Down to the 12 Marker Level

Here the matches between Jonathan and Paul are even greater than before. Now Jonathan has 2 pages of matches for a total of 38 matches. Paul, again, has only 4 matches. At this level, FTDNA only allows a GD of 1 or less. Here are Paul’s matches at the 12 level:

Paul's YDNA 12 Matches

Some facts and/or observations:

  • Paul has no perfect matches at any level. Again, I take this to indicate that Paul’s line has some unusual mutations in the YDNA compared to Jonathan’s YDNA.
  • If we hadn’t collaborated in this Project I wouldn’t know the STR values for Jonathan. So we wouldn’t know that Jonathan and Paul were both L664’s
  • Jonathan has 10 perfect matches. These all must be L664’s.
  • I wonder if testers #2 and #3 (Riley) in Paul’s match list above were testing to the same distant ancestor. It looks that way.
  • Tester #2 has a terminal SNP of L664, but we know that already as this person is a perfect match with Jonathan who is has the STR of 10 at DYS388.
  • Even at a level of 12 markers, Paul has a GD of greater than 1 with Frizelle.
  • Although the 12 marker and 25 marker results are interesting, the highest level of testing is most accurate and important.

Next up: I believe we have some more Frazer autosomal DNA results.

The Frazer YDNA Reveal: Part 3

In a previous Blog on the YDNA of the Frazers originating in North Roscommon, Ireland, I promised a reveal on the YDNA of my cousin Paul. As you likely recall, Paul is from the Archibald Line originating about 1715. Jonathan, who represented the James Line originating about 1717, had his YDNA tested a while back. This is what we were hoping to find out by having these two people test their YDNA:

  • Are the Archibald and James Lines related to each other?
  • Were the two Frazer Lines unbroken from the early 1700’s (or earlier) to now?
  • Were Archibald and James Frazer brothers?

YDNA, Autosomal DNA, Mitochondrial DNA, X Chromosome?

There are different types of DNA testing. They are well explained at 4 Kinds of DNA for Genetic Genealogy. Basically, with YDNA, we are looking at the father’s father’s father going back tens of thousands of years. The more you test the YDNA, the closer you get to present day. So this starts at the beginning of mankind and work toward the present. This type of testing is critical to one name studies. As we are looking the one name of Frazer, it makes sense to test YDNA. Autosomal DNA (atDNA) is pretty much the opposite of YDNA. This starts at the present and works back along all your lines. However, the further back you go, the more diffused the atDNA becomes. Some ancestors’ atDNA may drop out altogether.

First, the FTDNA Comparison

In my last Blog, I mentioned how Jonathan was R-M512. FTDNA has a computer program that looks at Jonathan’s 37 STR test. The STR test is like a YDNA fingerprint. Except in this example, the fingerprint is not always unique. FTDNA then classifies those STRs and determines what SNP test Jonathan would be positive for if he took the SNP test. The SNP is more of a positive unique ID test where the STRs can sometimes be ambiguous. However, R-M512 was not terribly helpful for Jonathan as it occurs sometime in the Stone Age. Ugh. Joanna put Jonathan’s results into an FTDNA Project called R1a1a Subclades. Based on the expert talents of the administrator there, that administrator was able to place Jonathan further down on the R1a tree at a place called L664.

Now last Sunday, when I was in New Hampshire, I got news that Paul’s YDNA results were in. This is what I was waiting for. This would tell us if the 2 branches were the same family and if the lines were unbroken. If this were to be the case, then the YDNA results would apply to all Frazers in the project and tell them about their deep ancestry.

FTDNA simply said that Paul’s Haplogroup (estimated SNP) was R-M198. This was further back in the Stone Age and less helpful than Jonathan’s results. For some reason, the combination of STRs did not compute well with FTDNA’s algorithms and they gave a very conservative answer. The good news was that both Jonathan and Paul were R1a which is a fairly rare YDNA for Northwestern Europe.

Jonathan and Paul by STRs

The STRs are the markers used to fingerprint the YDNA. According to Paul’s match list, Jonathan and Paul differ by a GD of 3. Now a GD is not a swear, it is something called Genetic Distance. It is simply how far off the markers are from another set of markers. So out of the 37 markers tested, there were 3 differences between the markers of Jonathan and Paul. The R-M512 is Jonathan and the R-M196 below is Paul. Can anyone spot the 3 differences?

Jonathan's STRs

Paul's STRs

I had to look very closely at the screen. The first difference between the 2 Frazer lines is at the fourth STR. Jonathan has a 10 and Paul has an 11. The other differences are on the right. 3 from the right end we see Jonathan with a 35-38 and Paul with a 35-40. The difference between 38 and 40 is 2 accounting for 2 of the 3 GDs. All of these positions have names.

STR Labels

Again a bit of an eye strain, but the differences between Jonathan and Paul are at DYS391 and CDY. Notice that these STRs have different colors. That is because the different STRs mutate at different rates. The red STRs have faster mutation rates. The blue ones change more slowly. The differences in the blues just represent different levels of testing. The higher the number of STRs tested, the lighter, the color of blue. So CDY where there was a GD of 2 is a fast moving STR. One would expect this would be where there would be a difference of 2 if there was to be one. The other marker of DYS391 is a slower mover. However, each STR has a published mutation rate. I have seen published rates for DYS391 that are faster than DYS385 which is shown as a fast mover. So there is more than meets the eye.

FTDNA’s TiP Report

FTDNA has a tool called the TiP Report. This is another mechanized way to estimate how closely you are related to a YDNA match. First, here are Paul’s YDNA matches:

Paul's YDNA Matches

I left out the tester’s names on the left. These are Paul’s 4 YDNA matches. He has fewer matches than Jonathan. Perhaps this is because he has a more unusual combination of STRs. Paul’s first 2 matches have a GD of 3, the last 2 have a GD of 4. That is why they are further down on Paul’s match list. When I run the TiP Report, this is what I get for Jonathan and Paul.

TiP Chart Paul Jonathan

This works out well, as our best guest is that Paul and Jonathan should have a common ancestor 8 generations ago. Given that, FTDNA thinks there is a 44% chance of Archibald, born around 1690 as being the common ancestor of these two. Hey, it could happen. FTDNA takes into account the speed of the mutations mentioned above, but as I mentioned above, there are differing opinions as to which  mutation rates to use.

R1a1a Project Administrator to the Rescue

When I had my own Hartley R1b YDNA a while back, I found the Project Administrator to be dedicated, intelligent and helpful. So I didn’t hesitate to join Paul to the R1a and Subclades Project as soon as I got home from New Hampshire as I had a feeling that the Administrators would have some good advice and information. I was surprised to get an email the next day from Martin from the Netherlands. He had written Joanna and myself and had some recommendations. Part of what he had was generic for the L664 group. Part of what he had to say was specific to Jonathan’s and Paul’s YDNA results.

The Reveal

I had promised a reveal. And the answer is…. [Break for commercial] Yes, they are related. Based on Martin’s expert opinion, he was able to determine that both Jonathan and Paul were from the L664 group. I had mentioned in my last blog that Jonathan appeared to be in the process of being placed in an L664 Group. I counted and there were 61 different L664 groups, so quite a few. Here’s where Martin’s experience came in. He could tell without testing for L664 that Jonathan and Paul were L664. Here is part of the standard L664 introductory email:

Because your haplotype shows DYS388=10 this means you are part of the subclade 2. (North-Western European Branch). For all other members of haplogroup R1a1 the value of DYS388 is nearly always 12, this means DYS388=10 is an unique marker for our subclade 2. This subclade 2. is further identified by the SNP’s CTS4385 and L664.
So back on the STRs above. DYS388 looks like the 7th marker. Actually it is the 8th as one marker before it is a double marker. Your will see that both Jonathan and Paul have a value of 10 there. This is the marker that sets the Frazers apart. Further I responded to Martin’s email and he wrote back:
I think both Frazers must be related because their STR-haplotypes are very rare in Ireland.
This is why I was surprised at the initial results from Jonathan: due to the unusual YDNA type he had. However, I’m glad that Paul matched him. I found this statement also interesting:
It is very remarkable that nearly all members of R1a1-CTS4385 (about 97%) have their origin only in the countries around the North Sea (British Isles, Norway/Sweden, Denmark, NW-Germany, Netherlands). The subclade R1a1-CTS4385 is represented by only 0,2 – 0,9% of the total population in the countries around the North Sea.
For clarification, R1a1-CTS4385 is the branch of the Frazer Tree above L664, so essentially the same thing. So L664 is rare, but rare can be good in identifying relatives. Here’s the North Sea for us geographically-challenged Americans:
northsea
One point of putting this map up is that Ireland does not border on the North Sea. If L664 types are 0.2-0.9% around the North Sea, they must be quite a bit less in Ireland. But how did these ancestors make their way from the circumference of the North Sea to North Roscommon. The answer to that question could lend or take away credence from some family traditions linking the Frazers to the Highland Clan Fraser of Lovat.
More On L664?

Nah, that’s enough for now. There will be more time later.

What Did I Learn?

  • The YDNA testing answer to whether the Archibald and James Lines are related was not as simple as I thought it would be. It took some digging and Project Administrator expertise to find the answer.
  • The 2 Frazer Lines are indeed related. This adds to family lore, older research and the Elphin Census of 1749 which shows the 2 families plus a third widow family living in Aghrafinigan, County Roscommon.
  • The 2 Frazer Lines as seen in the YDNA results have not changed from the time of the common ancestors. That is, other than expected minor mutations that occur in the STRs over time on a regular basis.
  • This strengthens the case for our autosomal matches between the 2 lines being just that (as well as being matches between related families).
  • It looks like we are on the right track with no skeletons in the closet
  • Asking whether 2 early 1700 men were brothers should be too much to ask of DNA results.
  • I am thankful for all those who have tested their YDNA in the past and provided information for YDNA trees which can be used today.
  • I am also appreciative of dedicated and talented Haplogroup Administrators.
  • A lot of other stuff, but I don’t want to be that boring right now. Wait until later.

Frazer Y DNA: Part 2

My first blog on Frazer Y DNA was called Why Test the Y? In that Blog, I introduced the concepts of STRs, SNPs and discussed some of Jonathan’s initial test results. Jonathan is the only male Frazer direct line descendant that has YDNA results so far. As such, we are assuming that his results apply to all Frazers. I’m not putting all my eggs in one basket, so I have had my second cousin, once removed, Paul, take a YDNA test also to confirm Jonathan’s results. A match should show that Jonathan from the James Line of the Frazers and Paul of the Archibald Line are most likely brothers. It would also show an unbroken line from these early 1700’s brothers to these 2 modern day male Frazers.

Joanna posted Jonathan’s results on the Fraser and Septs web page where anyone who has the remotest inkling of being a Fraser has posted their DNA results.

Fraser and Septs

However, as it turns out, there are not many Frasers/Frazers with the brand of YDNA that Jonathan has. Jonathan’s brand is R1a which took a Northern European route to Scotland – perhaps via Vikings. The majority of those in the Fraser group are R1b. These people took the Southern European route out of SW Asia to get to Scotland. As the common ancestor of these 2 is probably in the 10,000 year range, you can see we are not closely related to the R1b. However, there were two other Frazers in the R1a group. They are a Frazer and a Frazier. Interestingly they both have a ‘Z’ in their names, so that  was encouraging.

The R1a Project

The Frazer and Sept Group has about 1879 members. The R1a Project has 4390 members. I asked Joanna, Jonathan’s sister, to make sure that Jonathan was in the R1a Project. She did that as soon as she got back from a visit to France. R1a administrators would be able to further classify Jonathan. Family Tree DNA (FTDNA) had Jonathan as a R-M512. This is what they are sure he would test out if he had done a SNP test. This was based on the 37 STR YDNA test that Jonathan had. 37 STRs is a pretty basic level. 12 STRs and then 25 used to be the basic level. This R-M512 designation gets us up to about 6,000 years ago. It’s better than 10,000 years, but still not very helpful. At that point Jonathan’s ancestors were roaming around Asia according to the map below.

719235

Above is the new R1a Tree which has changed since my last blog on YDNA of less than a month ago.  Notice that M512 is actually 6,500 B.C. and R1a goes all the way back to 16,000 B.C.! Let’s see if we can get Jonathan out of Stone Age Asia.

Каменный_век_(1)

So, What is Jonathan’s New Classification?

People who are skilled at looking at the STRs can determine, based on the results, a better estimate of where Jonathan should be on the SNP tree. Each SNP can have a signature STR which can be determined by spreadsheet or a skilled interpreter. This interpreter would also be able to recommend focused SNP testing to get further down the YDNA R1a Tree. Previously, when I looked at Jonathan’s results, it said something like, “Awaiting Classification”. Now it looks like this:

L664

The note in red now says, “L664 results ready for classification”. My interpretation of this is that the administrators took Jonathan out of the unclassified bin and put him with the L664’s. They will then likely separate him into the group of L664’s where he best fits.

An Unexpected L664 – Is This Right?

First the good news. L664 is about 3,000 B.C. So that moved Jonathan up 3,500 years and got him out of the Stone Age. Not bad. The shocker is that L664 is Germanic. From the R1a Tree above, I would’ve assumed that the Frazers were more in the Z284 Branch. These are the Norsemen on the R1a Chart. Below this branch is seen the Scots. However, the Germanic L664 did migrate North to Scandinavia, so the results apparently are the same. How we got there was different than expected. Note on the map, some of the L664’s made their way to SE Britain. This could have been a less likely path to Scotland.

What’s Next?

We’ll wait to make sure the L664 designation was correct. Then we’ll see on what branch of the L664 Jonathan is. I expect in a month, we will have Paul’s YDNA results. I am eagerly awaiting those results.

I wonder if the other 2 R1a’s in the Fraser and Septs project (Frazer and Frazier) are also L664. If they had uploaded their results to the R1a project, perhaps we would know the answer to that question.

 

 

Why Test the Y?

In this blog, I want to look at YDNA. This is different from the previous blogs where we were looking at the autosomal DNA or the atDNA. The autosomal DNA is good for going back about 200-250 years. If you are lucky, it may go back some more. Also the atDNA is for both your parents and all of the parents of those parents. When you take the Family Finder test or AncestryDNA test or similar this is what you are taking. And when you get matches, you are getting matches to all of your ancestors. These are matching with everyone else’s ancestors. Not only that, these matches may represent matches with the descendants of those ancestors that not many people even know about. It is like finding a needle in a haystack.

The YDNA is much different. It just follows the father’s father’s father’s line. All the way back. Back to genetic Adam. I look at it like a LASER type of test vs. the scatter gun approach of the atDNA test.

There has been only one tester so far for YDNA in the Frazer DNA project. There is a reason that we only have one tester so far. In order for the YDNA test to be significant for the Frazer DNA project, you have to be a male Frazer. It turns out that there are relatively few of these male line Frazers around that are available and willing to test their DNA. My second cousin once removed, who is a Frazer, has recently agreed to test his DNA. His grandfather followed my great grandfather’s lead in coming to Boston, Massachusetts from Ballindoon, County Sligo, Ireland. So I’m anxious to see how his YDNA matches with our first tester and whether this proves an unbroken line between the 2 branches of our Irish Frazers back to the early 1700’s.

STRs, Genetic Distance, SNPs and Haplotypes

Our first tester tested for 37 STRs. STRs are Short Tandem Repeats. This is now the basic test at Family Tree DNA (FTDNA). However, at one time they were testing down to 12 or 25. These results are listed on the Fraser and Septs web page. According to that page, there are 1875 members. Our Frazer YDNA tester STR results are listed here.

Fraser YDNA Results

As you see, there are a lot of numbers. Everything seems to be reduced to numbers nowadays! These are the results for the R1a1 people in the Frazer group. There are only 3 people out of what I can only assume are 1,000 or more Frazer YDNA testers. The first R1a1 person is our tester. You see he has put down Archibald Frazer b. 1690 as his ancestor. The next tester also tested 37 STRs and the 3rd tested only 25 STRs. Note that all the testers spell their Frazer with a Z.

Each number in the chart stands for a different location on the YDNA. Taken together, these numbers create a YDNA type of fingerprint. The more STRs tested, the more specific the fingerprint. These locations were chosen as areas that are likely to change. The difference between the numbers of any 2 people is called the GD or Genetic Distance. This is a rough estimate of relationship. It is also a bit relative. Say someone has a GD of one when comparing two 111 STR tests vs. two 37 STR test. The GD of one for the 111 STR test comparison represents a much closer match. Here’s a closer look at the first 25 STRs of the R1a1 Frazers:

STR Locations

Frazer YDNA 25

The heading I put in doesn’t quite line up but are the locations of the STRs being tested. The first row below the heading is the maximum number for the STR. The second row is the minimum. The third row is the mode or the typical number. The purple numbers are below the mode and the pink numbers are above the mode. So our Frazer can be said to be a GD of 7 from the mode. This is because in the 7th column there is a difference of 2. All the other differences are one. For a GD of one in a 37 STR test, Family Tree gives the following chances of having a common ancestor:

Tip Chart GD1

Our current YDNA Frazer tester’s closest match is a GD of 1 match with a Frizelle. Perhaps this Frizelle was once a Frazer that changed his name to Frizelle. Or perhaps our Frazer name was once Frizelle. For comparison, his generations to the James of the James line would be 6 or 7 to the parents of the James and Archibald Lines.

Now all these STR numbers are used to estimate the Haplogroup. The estimated haplogroup is R1a1. This is the old name. The new name for R1a1 is R-M512 and  based on the test for that SNP. In the first screen shot there is a red R-M512 next to the 3 YDNA testing Frazers in the group. The SNP is red because it is estimated based on the STRs. If the SNP was tested, the color would be green. However, there is no need to test for R-M512 as the STRs already indicate that the SNP is R-M512. A SNP is a Single Nucleotide Polymorphism. In other words, it is a specific test aimed at finding a haplogroup or haplotype. So one might say that a STR test is a general description of the YDNA based on specific markers. The aggregation of these markers result in a profile that can be used to compare with other profiles. It may also be used to estimate a haplotype. The SNP test is a very specific test looking for a specific crucial spot in the YDNA that proves a specific haplotype.

One of the goals for this Frazer DNA project is to show by YDNA that the James line and the Archibald lines are related. We are pretty sure they are. However, over the years, things can happen, so it’s good to be sure. This YDNA could be used to trace our Frazer back to other Frazers in Scotland.

What is R1a1?

I’m glad I asked. When our first Frazer tested, I was expecting the results to be R1b. This is quite a common haplogroup. This is what my Hartley YDNA came back as. Some people associate the R1b with the old Celtic peoples of the area. My Hartleys were supposed to come from the NW England which is near SW Scotland where our Irish Frazer supposedly came from. So it made sense for me to guess that the Frazers would also be R1b. As I scroll down the Fraser and Septs – YDNA Colorized Chart,  I see that many of the Fraser/Frazer names are under R1b.

The difference between R1a and R1b is quite large. I would guess that these 2 haplogroups split from each other 10,000 years ago or more. The R1a people took the Northern route out of Asia accross Scandinavia perhaps and ended up in the Northern part of the British Isles. The R1b’s took the Southern route, generally, around Spain or possibly shortcutting through France and up into the British Isles.

There are also internet groups just for R1a1a people of any surname. Here is a map from one of those groups showing the migration and peoples descending from R1a.

R1a-ch

Notice that the Scots are near the Vikings. It would be interesting to see if our Frazers are positive for the L448 and L176 tests. That was the 2012 chart. There has been an explosion of testing over the last few years which has been difficult to keep up with and new branches are being discovered on a regular basis. Here is the 2015 chart:

r1a chart 2015

See all the extra branches at the bottom. Many of these are based on the Big Y DNA tests, that basically tests you for anything Y. You can see many more Scots branches near the 3rd little figure on the bottom. Unfortunately, our STR testing only gets us to about 6,000 B.C. This is caveman days, when our ancestors were still in Asia perhaps. However, as R1a is rarer than R1b the test should be good enough to show a male line match. Plus, the STR profile should be very similar.

Why Are So Few of our Irish Frazers R1a1?

There could be many answers to this question.

  • The Frasers/Frazers are apparently a large clan with many branches. Ours could be a separate one.
  • An early adoption of a Frazer could have created a different branch of the Frazers
  • DNA testing predates the adoption of surnames, septs, and clans. More than one group of people could have adopted the same surname, or become part of the same sept or clan. A review or our YDNA testing Frazer shows that his closest matches are with a Frizelle (GD=1) and a Grant and a Stuart (GD=2). This could indicate that the Frizelles, Grants and Stuarts could be related a point that predated surnames.

What Will it Mean if the Two YDNA Tests Do Not Match Each Other?

I am hoping they will match. If they clearly don’t match, then there will need to be additional testing to determine why and where that lack of matching occured. However, based on the autosomal DNA analyses done so far, I think there will be a match. There are many autosomal DNA matches between the Archibald Line descendants and the James Line Descendants. Here are the matches between the 2 lines. There are about twice as many matches since I wrote about this before in Frazer DNA – Celebrity Edition!

Matches Archibald James Lines

However, I can think of 3 ways to interpret these matches:

  1. This could be due to the fact that there were common collateral lines and these  matches are picking up the Frazer spouses common ancestors;
  2. this could be due to the fact that autosomal test is picking up this old Frazer connection that goes back to the early 1700’s or;
  3. the matches could be due to intermarrying between the 2 Archibald and James Frazer Lines subsequent to the early 1700’s.

So for now, we will sit back and wait for the new YDNA testing to come in. Then, as they say on TV, we will have our YDNA reveal.