Using Triangulation Groups to Map My Wife’s Chromosomes

I would like to update the Chromosome Map I have for my wife. The one I have now looks like this:

marie-cmap-old

This map is based on programming by Kitty Munson Cooper. It doesn’t look too bad. It only has 3 colors: 2 blue colors for her dad’s side and one color for her mom’s side. The red is based on the results from her 1/2 great Aunt. The blue is based on paternal grandmother cousins.

Here is Marie’s family of DNA tested relatives:

marie-relationship

From bottom left to right we have the following that have had their DNA tested:

  • Fred, Fred’s sister
  • Pat, Buddy
  • 1st cousin John
  • 2 Paternal Aunts
  • Dad and Mom
  • Aunt Esther
  • In addition I have results from a Dicks DNA study

The Rule of 1st Cousin, 2nd Cousin Combo

In my previous blog, looking at my mother’s side DNA, I came up with a rule. That rule said:

In a triangulation group between a person’s 1st cousin and a second cousin, the second cousin will be able to identify which grandparent the 1st cousins share.

I would like to apply this rule to my wife Marie as she has 1 first cousin and 2 aunts who have tested their DNA. These 3 are like cousins as the common ancestor of grandparent are the same. Marie also has 2 first cousins once removed tested. These would be similar to 2nd cousins as they both have great grandparents in common.

mariepaternalrelationships

Basically, right now if Marie compares herself to John or her 2 Aunts Lorraine and Virginia, she doesn’t know if the shared DNA is from Estelle LeFevre or Edward Butler. However, a triangulation group (TG) with Fred, Fred’s sister, Pat or Buddy and John, Lorraine or Virginia, will show that DNA to be from Estelle LeFevre. Further, not just the match in common to the TG will be from Estelle, but the entire segment represented by Marie’s match to John or her 2 Aunts will be from Estelle.

That’s My Theory, Let’s Try It Out

I have a boatload of combinations to try this theory out on. First, I’ll go with Fred, Fred’s sister, John, Marie and her 2 aunts. First I go to Marie’s one to many menu at Gedmatch and I choose Marie’s relatives I just mentioned. Then I choose the Matching Segment CSV. This downloads a file of all the matches between these 4 people, making it easy to find TGs. I could have used the Chromosome Browser but that only hints at TGs. However, I will use the Chromosome Browser to focus my search.

Chromosome 14 example

chr20ex

The browser show’s Marie’s matches to:

  1. Aunt Lorraine
  2. Cousin Pat
  3. Cousin Buddy
  4. Aunt Virginia

Here is how I have the Triangulation Group (TG) beween these 5 mapped out:

patbuddytg

This shows a Triangulation Group (TG) between Pat, Buddy, Aunt Lorraine. Aunt Virginia and Marie.

Now a few observations:

  • The chromosome browser view above is from Marie’s point of view
  • Marie’s matches with Pat or Buddy (#2 and #3 on the browser) represent the DNA they share from either Martin LeFevre or Emma Pouliot. It is also likely that one segment is shared from each of Marie’s great grandparents.
  • These segments are represented in the Kitty Munson Cooper Chromosome Map at the top of this Blog.
  • The long segment shared between Marie and her Aunt Lorraine is from one of Marie’s grandparents. Because Pat and Buddy also match Aunt Lorraine, we may say for sure that the segment Aunt Lorraine shares with Marie must have come from Aunt Lorraine’s mother Estelle LeFevre.
  • Marie’s DNA she got from her grandmother Estelle is shown below.

munsonmaprev

The previous map had 2 blue segments on Chromosome 20 representing either of Marie’s paternal grandmother’s parents. We didn’t know which. Now it shows the one large segment taking up all of Chromosome 20 from her known paternal grandmother. The green should say Estelle LeFevre b. 1904 – not Emma Pouliot b. 1894.

chromosome 15

On Chromosome 15 here are the same people, but in the following order: Aunts Lorraine and Virginia, Pat and Buddy.

mariechr15

kittymarie15

Interestingly, this time the program doesn’t overwrite the light blue. This is because the match for the light blue extends further than the match for the green. When I mouse-over the original map, it shows that the light blue match starts at about position 34 while the green match starts at about 35. Because of this, the entire blue match shows until it’s end and then the green match is shown.

This blue, light blue, green progression represents 3 generations of Marie’s ancestors on her paternal grandmother’s side.

Paternal Grandmother Results Using 1st Cousins, Once Removed

Here are the results of comparing Marie’s cousin and two aunts to her two 1st cousins, once removed. Here I correctly have Estelle LeFevre  b.1905 labeled for the green areas.

mariepatbuddychromomap

 

I didn’t bother doing the comparison for Marie’s X Chromosome. The reason is this. The X Chromosome that her dad gave to her, he got from his mom. That means that the green must extend for the whole X Chromosome. For that matter, the light blue would also be Marie’s paternal grandmother’s parents.

How to Identify Emma Pouliot?

That seemed to work well for Estelle, but is it possible to be go back one generation further and identify one of Marie’s great grandparents by DNA? I think so. Let’s take a look. This time, I don’t want to look at Marie’s 1st cousin John or her 2 aunts. The reason for that is that when I compare Marie to those 3 people, the common ancestor would be Marie’s grandparents. I want to compare Marie to her 2 first cousins, once removed to find her great grandparents – or in this case her paternal grandmother’s mother Emma Pouliot b. 1874 in the Province of Quebec.

tgchr1

We are using the same principle as before, but going one rung up the ladder. I will look for a Triangulation Group (TG) between Fred, Fred’s sister, Pat, Buddy and Marie. Once I find that TG, I will take the DNA match between Pat or Buddy and Marie and assign that DNA match to Emma Pouliot.

Chromosome 1

Let’s try this out on Chromosome 1:

pouliotlefevrechr1

  1. Fred’s sister (2C,1R)
  2. Fred (2C,1R)
  3. Pat (1C, 1R)
  4. Buddy (1C, 1R)

It looks like there should be an overlap between #1 and #3, but they have no match there in the middle of the Chromosome. However, on the right side, there is a match between #1 and #3. Using my plan, I’ll assign Emma Pouliot to the green segment. In this case, #1 and #2 representing the parents of Emma Pouliot are larger. It would stand to reason that these would belong to Emma also. However, for consistency, I will just map Emma to the green segment.

When I tried to map this using the Kitty Chromosome Mapper, it didn’t show up as Estelle had already filled up that slot.

Chromosome 2

chr2buddyfred

This time the two 1C’s, 1R are on the top and the smaller segments representing Marie’s two 2C’s, 1R are on the bottom. Is there a TG? I lowered the gedmatch thresholds, which I didn’t do for the first part of this Blog. Here is the match between the 1C, 1R and the 2C, 1R:

gedmatchchr23

They match on Chromosome 2, but a little below the 7 cM threshold. I’m not worried as I’ve read that in a TG a match is likely to be good down to 5 cM. That means that I will map Pat’s #1 green segment to Emma.

Unfortunately Estelle is taking up the space where Emma would be mapped on Kitty’s Mapper. This seems to be a trend.

Chromosome 13

I did the same exercise as above and mapped with no results. This time I took out the other references in the area of Chromosome 13 that were blocking Emma and got this:

emmachr13

Now we see Emma’s DNA in lighter green on Chromosome 13. The downside was that I took out some of Estelle’s DNA to the right of the light green area so Emma’s DNA match with Marie would show. Hey, I created this map; I can do what I want with it.

So that is what I found. My wife can claim hold to a lot of her grandmother’s DNA, but only 3 identified segments of her great grandmother’s DNA based on this procedure. Of course, one may say that every instance of finding the parents of Emma would be the same as Emma. Based on that idea, I’ll try another map.

emmaestelle-map

This map isn’t really any better, it is just meant to show that whether you have the parents or the child, it fills up the same area on the map. Note I have the same problem here where Estelle fills up the older Emma DNA on Chromosomes 1, 2, and 13.

Marie’s Dicks DNA

The idea for this section should be more straightforward. I have been involved with a Newfoundland Dicks DNA project. There are many people who have tested their DNA and found through triangulation to be likely related to the Newfoundland Dicks family. For example, here is a list of the Dicks Triangulation Groups (TGs):

Dicks TG Summary

These include the Dicks TGs except for the most recent few. Joan is near the middle of the chart. She is my wife’s mother. All I have to do is see if Marie is in any of the same TGs that her mother is in. Then I can take the match with the other 2 from the TG and assign that DNA to the appropriate Dicks ancestors.

Here is what was added (in yellow):

mariechromomap

All that was added was a probable Dicks segment on Chromosome 2. There were other Dicks segments but they were “behind” Upshall matches. That means that they are the ancestor of Frederick Upshall. The reason that the Chromosome 2 match stood out was that it was a match with Joan (Marie’s mom) and not with Marie’s great Aunt Esther (represented in red above).

Check Your Work

Fortunately, M MacNeill [prairielad_genealogy@hotmail.com] has looked at my wife’s family’s Chromosome 1. He has looked at the raw DNA which is more under the hood than what I am doing. Here is a small portion of his work. He phased Marie’s father and 2 aunts and then went back and put that information into Marie’s DNA.

macneillchr1marie

The interesting thing about MacNeill’s map is that it includes the DNA for Marie’s 4 paternal great grandparents. The cross-hatched area is where it was not possible to determine the crossover point. At any rate, MacNeill points out some errors in my Chromosome mapping for Marie. He has sections of salmon or pink indicating Richard’s paternal grandparents where I have Marie mapped to Richard’s maternal side.

This is when I go back to my spreadsheet for the details:

mariechr1notg

In the first part of Chromosome 1, it is clear that Marie does not match Pat, Buddy, Fred, or Fred’s sister, so I cannot call that a TG or a Paternal grandmother match for Marie. My original rule said that Marie had to be in a TG for my segment extending plan to work.

Here is where I removed 2 paternal grandmother segments on Chromosome 1:

mariechr1rev

However, on the right of Chromosome 1,  MacNeill has more paternal grandfather DNA mapped where I again have paternal grandmother. In my defense, this was an area where, according to MacNeill, Fred and Fred’s sister appear to match on both the paternal grandmother and grandfather side. I couldn’t have known that as I only had information for the paternal grandmother side.

One other point on Emma pouliot

emmaphoto

Above, I had mapped Emma Pouliot to Marie on Chromosome 1:

emmamappedsegments

Here is a larger view of what MacNeill had for Marie’s family’s Chromosome 1:

richard-chr1

The legend on the top line is difficult to read, but Pouliot is the darker red. More specifically, that would be Emma Pouliot. Marie is on the bottom line. The last vertical white line in Marie’s dark red area represents position 198. As I had mapped Emma from 197 to 207, that would put her in the end of the dark red area of Richard’s Pouliot maternal grandmother, before Marie’s DNA switches to the DNA she got from her dad’s paternal side in the salmon color. So at least my work agrees with MacNeill in this little area.

Summary and Conclusion

  • Most of the additional segments came by phasing the unknown grandparent using the 1st cousins’, once removed shared DNA
  • This method could work well along with the visual chromosome mapping that Kathy Johnston developed.
  • There is a fine distinction with mapping the DNA of one’s known grandparent and mapping the DNA of the parents of that known grandparent. When mapping to the parents, the individual segments could be from either parent. When mapping to the known grandparent, that larger segment could contain compound segments of the parents. It is a subtle distinction, but one that should be maintained in my opinion for future research.
  • Using the Kitty Mapping tool is fun and instructive as to how DNA works. It can be manipulated to show what one would like to be shown. For example, when I wanted to highlight the Emma Pouliot segment, I was able to do that.
  • Even with no paternal and maternal grandfather DNA matches for Marie, I have been able to fill out her Chromosome map quite a bit – mostly on her paternal grandmother side.

Updates to Whitson, Whetstone and Butler YDNA: A Proposed Whitson/Butler Tree

There have been some good news since my last Blog on Whitson and Butler YDNA. I wrote that almost 2 months ago. The biggest news is that there are new people in the group.

whitsonbutlerydnatestees

There is now one new category – R1b>R-M239 Whetstone (in yellow). There are 2 new people there. There is a new person in the I1>M253 Whitson/Whetstone Group (McIntyre). There is a new Whitson under I2>M223 who has taken the 111 STR test which is one of the best available. He shows up under the green section as having an ancestor Jacob Whitson. I believe that he had tested before when Ancestry had YDNA testing, but unfortunately, it is not easy to compare the two tests. His results are of special interest to me as he is in the group with my Butler father in law. There are now 3 Whitsons and 3 Butlers in this I2 Subgroup.

In this Blog, I will be analyzing and drawing trees for the green I2 Whitson/Butler Subgroup as they have the most in the group. With too few people in a group, it is difficult to draw trees.

YDNA – What Does It All Mean?

As many know, YDNA shines a laser bean down the male line to the far past. YDNA can quickly show who is not related. For example, in the chart above, the people in the different colored subgroups cannot be related. The connection between these groups could be in the 1,000’s or 10’s of thousands of years. To find who is related by YDNA is more difficult. The probability of relationships are predicted. This is because distance is measured in STRs and STRs can mutate whenever they want, even though on average that all mutate at a certain rate. Then some STRs may mutate faster than others – or much more slowly.

The TIP Report

FTDNA’s TIP Report is a good tool, because it estimates how closely 2 people may be related in generations based on probabilities. It takes into account the number of STRs tested and rate at which the STRs mutate.

batt and butler TIP

i2whitson-burtler

First, we will look at #1 and #4 on our list. They both tested at 111 STRs. The Report shows the likelihood that those 2 would share a common ancestor in the previous generations:

batt-peter

I usually feel that 90% is pretty likely. Let’s say a generation is 34 years. That would be 408 years ago or 1608 from now or even further back if we start from when someone was alive today and born in the 1950’s. Then it could be as close as 4-8 generations. Hopefully, we would know if the match was 4 generations ago, but the point is that the number of generations to a common ancestor could vary quite a bit.

I did a comparison for everyone in the Green Group above:

tipchart

I found the results quite interesting:

  • Mr Batt appears to be the same distance from each person in this group – irrespective of whether the match is a Butler or Whitson descendant
  • #4 Butler varies the most between 8 and 18 generations
  • #3 Butler was on average related most closely to the group
  • It appears that a sort of tree could be drawn from these results
  • It appears that this group of Whitsons and Butlers have been related to each other for quite a while. The number 12 comes up a lot for generations to a common ancestor. My guess that these two families have been related to each other for between 8 and 12 generations

These are my interpretations from just the TIP Report so far. I am open to other theories.

A tree from tip reports

I have never seen a tree drawn from these TIP Reports, but it would be interesting to try. Here is my first try:

whitbuttreept1

This shows the furthest and closest relationships based on the TIP Report. #4 is 17 generations away from #2 and #4 is 8 generations away from #3. Now I just need to add one more Butler and 2 more Whitsons. But How? Here is a simple solution:

simple-tree

Here this assumes that all the GDs above 8 are pretty much equal and that everyone matches above at the common Whitson/Butler Ancestor. Here is another option:

tip-tree-2

This looks nicer, but I can’t say that it is more accurate given the TIP Reports. Here is a 3rd try:

tiptree3

This doesn’t seem to do the TIP Report justice either. I’ll go on to the more traditional trees made using STRs.

STR Analysis

I’ll now try to create a tree using a method developed by Robert Baber in 2014. Here is an example of one of his trees:

baber-example

In my previous Blog, I looked at signature STRs. Those are the similar STRs that define a group. However, to created a tree, I will be looking at the STRs that are different.

I2 Whitson/Butler STRs

Here is a chart of the defining differences in the I2 Whitson/Butler Group:

i2whitsonbutlerstrs

modes

The first mode above is an I-A427 mode from the FTDNA I-M223 Y Haplogroup Project. So this mode should be a more generic version of the Whitson/Butler Group. The assumption is that the mode for this larger group goes back further in time than the Whitson/Butler Group. The reason that this is important is that it should tell us which way the STRs are moving.

  • In the first column with numbers above, the A427 mode is 29, the W/B Mode is 31 and 6 Butler (Michael) is 32. That means the STRs are mutating up.
  • Look at DYS576. That is a red STR. That means it is a fast mover. A427 mode is 18, W/B mode is 16 and Batt is 15. That means that the trend of STR mutation is going down over time.
  • CDY is a fast mover and difficult to interpret. Some people might ignore the CDY results for this reason.
  • Finally look at the last 2 columns above. The A427 (older) modes are 14 and 12. The Whitson/Butler modes are 16 and 14. That would indicate that the trend in STR values is upward. However at that level of STR testing (111), the 2 Whitsons are at the higher level and the Butler is at the lower STR level. If we were just looking at the 3 Whitson and Butler STR results here in isolation, we would think that the Whitson higher level STRs were older and that Butler is changing away from them. However, by using the broader I-A427 vantage, we can see that it is likely that is Whitson changing away from Butler. This could have implications as we try to determine who came first – the Butlers or the Whitsons in this I2 subgroup.
  • It is possible that if all those in the I2 group had tested for 111 STRs, that the above point would be clearer.

Just based on the last 2 STRs of the 67-111 STR results, I would draw a tree like this:

butlerwhtson111tree

Unfortunately, I am having a lot of trouble understanding the Baber Paper and I am pulling the plug on that method for now. However, there are interesting concepts in it that are helpful.

From Baber to Robb

John Bartlett Robb put out a paper in 2012 called:

Fluxus Network Diagrams vs Hand-Constructed Mutation History Trees

In that paper Robb gives a procedure for drawing trees.

In his paper, Robb uses only the STRs in common, so in our case, that would be the 37 STRs. He also creates a Root Prototype Haplotye (RPH). In our case that RPH would just be the Whitson/Butler Mode. Then he notes deviations from that RPH in lime green:

robbstrs

Here are the Mutation Rates for the applicable STRs extracted from the Robb Paper:

mutation-rates

The faster mutations are on the bottom and slower ones on the top. I added in the people on the right that had the mutations. On 37 markers, everyone had one mutation except for Butler (James) who had 3.

Proposed Whitson/Butler Tree

Here is the tree I came up with based on 37 STRs:

proposed-whitsonbutler-tree

From there, I recall a rule by Baber which says, in my terms, “you should only have 2 lines going into each box”. Here is a tree that meets that rule:

treebaberrule

So reading down from the top, we have the common ancestor which I have as Butler Ancestor 3. That ancestor has a certain signature based on STRs. Then I have my father in law branching off with a 389ii that goes from 31 to 32. I took my father in law as the first mutation as he had the second slowest mutation after #4 Butler. I couldn’t choose #4’s slowest mutation at that point as that mutation apparently happened after the common mutation (of 570 22 to 23) he had with #3 Butler. Branching down from Butler Ancestor 2 is Whitson Ancestor 2. From him I have #2 Whitson (Jacob) branching off as he has a slow moving STR also. Then from Whitson Ancestor 1, I have #5 Whitson (Isaac) and #1 Batt (Wm Whitson).

Also from Butler Ancestor 2 I have the common mutation of STR 570 which went from 22 to 23 in a presumed common ancestor of #3 Butler (Laurence) and #4 Butler (James). After this common mutation, the #4 Butler line had two additional mutations – one on the very slow mutating STR and one on the very fast mutating one.

The technique takes a little logic, a little guesswork and some knowledge of how the STRs mutate. If I had plugged #6 Butler into Butler Ancestor 2 and Whitson Ancestor 2 into Butler Ancestor 3, it wouldn’t have made much difference. I did it the way I did based on the speed of the STR’s mutation rate – all other things being equal. The overall idea is to get from the common ancestor signature STR to the individual members’ STRs.

I think the above tree is a likely scenario considering:

  • I see the Whitson STRs changing off the Butler STRs in my charts above.
  • The Butler STRs are slightly slower changing STRs which could indicate an older line.

Some other points:

  • It is likely that the Whitsons and Butlers are grouped together by surname as I have them.
  • The Butlers all descend from Ireland. If the chart is correct, then the Whitsons in Subgroup I2 could also descend from Ireland. A more complicated speculation would have both lines in England. Then the Butler line could have gone to Ireland and the Whitson Line to the U.S.

Whitson and Butler YDNA and Signature STRs

Two Types of YDNA: SNPs and STRs

As many know, YDNA is the DNA of the male line.

SNPs can be seen as the trunk and branches of the tree and the STRs can be seen as the twigs and leaves. Before we analyze the twigs and leaves, it is good to know if we are in the right tree. However, even when looking at the leaves, it is sometimes possible to guess the type of tree.

maple-leaf

For example, in the Family Tree DNA (FTDNA) Whitson project, there are officially nine people listed. There are more that have tested, but not with FTDNA. In the list below, there are three broad groups represented by the colors orange, teal, and yellow. These are the SNP groups, or the tree types. These three groups are I1, I2 and R1b.  These SNPs break down into finer and finer distinctions. However, there is no connection between I and R in the range of 10,000’s of years. There are also a huge amount of years between the I1 and I2 SNP Haplogroups.

Whitson FTDNA Project Results
Whitson FTDNA Project Results

Once people are grouped in the SNPs, then it is possible to compare the STRs. These are the numbers to the right. These are what I was referring to as the twigs and leaves. However, these are only compared within the other major groupings of SNPs.

Why Are There Three SNP Types for the Whitsons?

There are various reasons:

  1. When surnames were being developed, this name could have developed independently at different locations.
  2. An adoption could have taken place at some point. This is under the category of Non-Paternal Event (or NPE) as are #3 and #4 below.
  3. An unwed mother could have had a child that had her name. However, as the father has the YDNA, his YDNA would be carried on to the male child in the line.
  4. A relationship outside a marriage would tend to break the YDNA line also.

The SNP Types or Haplogroups

SNP groupings are called Haplogroups. Here are some of the Whitson Haplogroups:

I1>I-M253

The first Haplogroup above are the I1>M253 Whitsons. There are 2 Whitsons in that Haplogroup. FTDNA has a group just for I1’s. There are currently about 6000 people in this group. Not much analysis can be done with these 2 right now as they match by STRs exactly. If these 2 Whitson join the FTDNA I1 Project, it may be possible to find a signature STR for these 2 (see below).

I1 people have sometimes been associated with the Vikings. This group of people did seem to take a Northern route in their distant ancestry, so that is where the association comes from. However, there may be finer distinctions once we learn more about this I1 Whitson Group.

I2>I-M223

FTDNA has an I-M223 YDNA Project. The Whitsons and Butlers in our project are in a section of that projects called:

1.2.1.2.1.1.1.1- M223>…>L701>P78>S25733>A427 (Cont3a1 Group 2)

One of the Butlers in the group has tested positive for the SNP called A427. The other 4 were put in that group due to their similar STRs. This is like saying what tree you are by your leaves. A427 is quite a way down on the SNP tree. Using my tree analogy, this would be a very specific type of tree.  Below are all the people in the A427 SNP Group. I only included up to the 36th STR (small numbers) as the image was all ready small enough. There were actually more STRs tested to the right of this image.

Whtson Butler STRs

Now the A427 SNP is like the specific tree and the STRs which are the numbers listed are like the different branches, twigs and leaves. I would like to point out here a specific fingerprint for our Whitsons and Butlers. Here are our 5 Whitson/Butlers outlined in red:

Whtson Butler STRs Highlight

The first 3 rows of numbers are the minimum, maximum and mode of this A427 Group for each STR. The purple colors are the STRs that are less than the mode and the pink colors are the values that are more than the mode. Our 5 Whitson/Butlers will have a unique STR signature among all those who are in this A427 Group. Here is the same shot, with just the most important numbers outlined in yellow:

STR Heards

Whtson Butler STRs Signature

And the I2 Whitson/Butler signature is:

DYS389II=31 or higher, DYS454=12, DYS448=21 or higher, DYS449=26

Note that for all those in the A427 Group, only our group of Whitson/Butlers has this signature. This signature is just in the 1st 21 markers (or STRs). In this Whitson/Butler Group, 2 have tested 37 STRs, 1 has tested 67 and 2 have tested 111 STRs. Now above the 37 STRs, there are likely more Whitson/Butler signature STRs for those that have tested to that level. The marker (STR) names are listed above. The markers that have a reddish background are those that are faster moving markers. They change more often than the blue background markers.

This Group of YDNA have sometimes been associated with the ancient Goths. So far we have Vikings and Goths with our Whitson or Whitson/Butler Groups.

R1b-R-U106 group

This Group has been associated with the Anglo-Saxons. Although this group is sometimes associated with the modern English, they likely began in an area of current Germany or Belgium and invaded “England” some time after the Romans left the Island.

Right now there are only 2 Whitsons that have tested with FTDNA in this group. There is an additional Whitson who has done the old Ancestry test that is no longer available. The Ancestry test doesn’t match perfectly, but for the STRs that were tested, all the STRs match.

Both these R-U106’s have joined FTDNA’s R-U106 Project. The first person descends from Henry Whitson who lived on Long Island in the 1600’s. He has tested for 67 STRs and has this designation from the U106 Project:

Z381>Z156>Z306>Z304> DF98 ??? Need to order Big Y or R1b-Z156 SNP Pack

These are the SNPs that the U106 Project specialist thinks this person would test positive for if he had tested SNPs. Perhaps the specialist was not so sure about DF98. That is followed by what the U106 specialist recommends for those that are in the group. The Big Y is quite an expensive test but very definitive and actually finds new SNPs. The SNP Pack tests for several SNPs, in this case below Z156. [However, see my own recommendation below.]

The second person in this group matches all STRs at 67 STRs with the previous person. However, he has tested 111 STRs and has tested his SNP to be R-S23139. He is in a different section of the U106 Project:

Z381>Z156>Z306>Z304> DF98>S18823>S22069>S11739>S23139

Note that the U106 Project specialist doesn’t have any more recommendations for this person, because he has done all the testing down to R-S23139. My guess is that if the first person were to test for R-S23139, he would be positive for that SNP also. That would get these 2 Whitsons together for the U106 Project. That would also cost less many than taking the SNP Pack.

Here is a snapshot of the R-S23139 Group:

U106 Peter

Here our lone Whitson is with some others that appear to be from Germany. In looking for a unique STR for our 2 U106’s, first I see a value of 12 in the last column above for DYS531. If I counted this right, it is the 38th marker, so this signature Whitson U106 STR would not have shown up on a 37 STR test. In our previous Whitson/Butler Group there were many signature STRs in the first 37 markers.

Let’s look for some more signature Whitson STRs in the R-S23139 Group:

U106 67 STRs Header

U106 67 STRs

I am starting where I left off at the signature 12 in the first column. Then I see a unique 16, 12 and 11. This means our R-S23139 signature (assuming our 1st Whitson is positive for R-S23139) is:

DYS531=12, DYS594=16, DYS568=12, DYS487=11

After that, there is a 36 and 28 that are unique, but they are in the 111 STR group. The 111 STR group is also indicated in the header where the STR names have a lighter blue background. There are many other STRs after that that are likely unique in the 111 STR test also.

Any Other Whitsons?

Yes. The Whitson Family Group contacted another person and found out that he was R1b, but a different brand of R1b. This R1b was associated with the people who were in the British Isles before the time when the Romans, Vikings, Danes, and Anglo-Saxon entered the area.

Summary and Recommendations

  • So far, for a small group of Whitsons and a few Butlers, there are many types of DNA groups. These represent people that are distantly related to each other genetically.
  • There are some Whitsons that had taken the old Ancestry test. They could benefit by also taking the FTNDA test. I know of one Whitson who has already gone that route and is awaiting results.
  • Some Whitsons may benefit by taking an additional SNP test, to make sure they are in the right tree -so to speak.
  • Those Whitsons in the I1 YDNA group could benefit by joining the FTDNA I1 Project.
  • With the close matches in the I1 Group and the R-U106 Group, it seems like it should be possible to find some common ancestors.

 

 

 

 

 

My Father In Law’s Grandparents’ DNA

In this Blog I will use a technique described by Kathy Johnston to look at some of my father in law Richard’s DNA. I will map out his 4 grandparents on Chromosome 15. These would be 4 of my wife’s great grandparents. Then I will try to figure out which grandparent goes with each segment of the mapped Chromosome.

My Father In Law and His Two Sisters

The mapping technique requires 3 siblings. My father in law tested at FTDNA and his two sisters tested at AncestryDNA. I have those results and have uploaded them to gedmatch.com.

fully identical and half identical

In the first step, I compare the 3 siblings to each other using gedmatch.com using their chromosome browser. Here is how Lorraine and his brother Richard (my father in law) match each other at gedmatch.com on Chromosome 15. I chose this chromosome because it is one of the smaller chromosomes, hence easier to map. Also I already knew there were some other cousins on Richard’s maternal side that had tested and had fairly good results with Richard on this Chromosome.

Lorraine V Richard
Lorraine V Richard

As shown in the above, Lorraine and Richard have one long match on Chromosome 15. I will use locations in millions, so I’ll say the match was from 18 to 94. This is represented by a sold blue line. According to FTDNA, the area before 18 is a SNP poor area not used for comparisons. The solid green sections are where Lorraine and Richard share the same DNA from 2 of their grandparents. These would be one maternal grandparent and one paternal grandparent. The green is also called a Fully Identical Region or FIR. The yellow area is called a half identical region. This means that Richard and Lorraine share the DNA from one maternal or paternal grandparent. The red area with no blue line below it is the area where Richard and Lorraine don’t share any DNA. However, this information is actually quite helpful. This would mean that if Richard got his DNA in this segment from his Paternal Grandfather and Maternal Grandmother, that Lorraine’s DNA would have to be from her Paternal Grandmother and Maternal Grandfather, for example. There are only 4 choices, so process of elimination can be used.

Comparing three siblings at a time

Next I line up the results of the three siblings.

Chr 15 3 siblings

I am now looking for crossovers. This is where Richard’s DNA, for example, switched from being inherited from one grandparent to being inherited from another grandparent.

Chr 15 with crossovers

Next I look down every line to see who owns each crossover. Let’s just look at the first vertical crossover line. In comparing Lorraine V Richard, nothing is changing there as there is green on either side of the line. At Lorraine V Virginia, and at Richard V Virginia, there is a change from no match to an HIR. The one in common in those 2 changes is Virginia. So she is the one that owns the first crossover point. That means at that point (to give a number would be 27) she received her DNA from one grandparent to the left of that point and she received her DNA from another grandparent to the right of that point. We don’t know which grandparent, or whether it was on her maternal or paternal side. We do know that both grandparents on either side of the crossover are either maternal or paternal grandparents. That fact will help me as I try to figure out which grandparent Virginia got her DNA from.

Assigning crossover points

Here we will give a name to each crossover point. We are building a DNA skeleton or frame for each person so to speak. These are assigned by each persons’ initial at the bottom of each vertical crossover line below.

Assign Names to Crossovers

This tells us that there are 7 crossovers for the 3 siblings. Virginia has 3 and Lorraine and Richard have 2 each.

The chromosome map

Next I will build a Chromosome Map based on the above information. This map will be for the 3 siblings and have a maternal and paternal side with 2 grandparents on each side. [That should make sense as you think about your own family situation.] To begin with, these grandparents will be represented by 4 different colors as we won’t know which grandparent is which. Here is the bare bones skeleton:

Skeleton

I kept the crossover designations on each of the vertical lines. I’ll add the 3 chromosome maps to the right of the L, R, and V on the left side for Lorraine, Richard, and Virginia. On the bottom, I have the locations on the chromosome for each crossover point. I am missing a location for the next to the last crossover line. This could be guessed or estimated based on where Virginia’s actual crossovers are later. By eye it would be about 90.

Let’s map it

Assign Names to Crossovers

I could start with any area, but I’ll start with the top left. This is the green FIR match between Lorraine and Richard. Fully identical means they both received the same DNA from the same 2 grandparents. Those 2 grandparents were one from the mother’s side and one from the father’s side. Those will be represented by green and blue.

Chr 15 First FIR

Lorraine will have one crossover preventing one of her lines (colors) from extending beyond her crossover further to the right. Richard has no crossover at this point, so his two grandparents’ DNA can extend to his ‘R’ crossover line. Meanwhile Virginia doesn’t match at either grandparent in this area, so we need to give her 2 different colors representing the DNA she got from her 2 other grandparents.

Chr 15 part 2

Due to the place I started, I’m stuck already – at least on the FIRs and no matches (green and red sections of the chromosome map).

Assign Names to Crossovers

The next step is to map an HIR. As HIRs are more ambiguous (one matches and one doesn’t) I only get one shot at guessing. Once I make one guess, then this locks in the grandparents and no further HIR guessing is allowed. Our choices for HIRs are between 27 and 35. I’ll choose Lorraine V Virginia. They are HIR between 27 and 31.

Chr 15 part 3

Now comparing L and V from 27-31, I see that their 2 green segments match and their blue and purple segments do not match. This was my one chance at guessing. I could have guessed the other way around and it wouldn’t have mattered, but at this point the colors are locked in and no more guessing is allowed. Next, Virginia has no crossovers for a while, so I’ll extend the DNA she got from her green and purple grandparents to the right to her next crossover point.

Chr 15 part 4

Next I notice that Virginia has no match with Lorraine from 31-46 and no match with Richard from 35-60. That means that Lorraine and Richard got their DNA from the opposite grandparent on their maternal or paternal side. So far, everything is relative, so the top orange and green may be maternal or paternal. We don’t know yet.

Chr 15 part 5

Scanning up from Virginia’s Chromosome 15 map from location 35 to the right, we see that Richard and Lorraine have the opposite colors. That corresponds with the no match comparisons we had in the gedmatch comparisons. We would be stuck here except for the fact that on Richard’s bar, he has no crossover at location 60. [That crossover at 60 belongs to his sister Virginia.] That means that the DNA that he got from his orange and blue grandparents can extend to his next crossover at 95.

Chr 15 part 6

Assign Names to Crossovers

Now we again are almost stuck, except that Richard and Virginia have a green FIR from 90 to 95.

Chr 15 part 7

We can then extend Virginia’s grandparents’ DNA to the right.

Chr 15 part 8

Assign Names to Crossovers

Now we truly are stuck. We only have HIRs left and I already used my one guess for those. There is a no match between Lorraine and Richard on the right hand side, as we have no DNA to go against after 95 for those 2.

Cousins to the Rescue

There is one more way to fill in these segments. That is with the matches from actual cousins. We will want to figure out which grandparents these segments go to if we can anyway by using cousin matches. First, let’s look a little at the genealogy of the cousins that have tested.

Pouliot LeFevre Diagram

In the bottom box is Richard, but I should have included his sisters Lorraine and Virginia there also. These siblings have 4 cousins that have tested on the maternal LeFevre side. Here I got a snapshot of Estelle LeFevre (b. 1905) while getting DNA from Virginia:

0306161846

There are 2 testers descended from the Pouliot Grandfather. The other 2 testers are descended from Pouliot and LeFevre. I discussed the issues in separating the DNA from those two ancestors in my previous Blog.

Pouliot LeFevre Diagram rev

Here are the 3 siblings as they match their reference cousins. The more important cousin, in a way, is Fred as he descends from the Pouliots and not the LeFevres. Note that there is no overlap between Fred versus Patricia and her brother Joseph in each comparison. That is where the crossover is occurring between the Pouliot grandparent and the LeFevre grandparent. Now for each sibling (Lorraine, Richard and Virginia) that crossover is at a different location. For Lorraine, it is at 31. For Richard, it is at 35. For Virginia, it is at 28. Now refer to the second image below. The place where all those maternal crossovers occur is on the top row of each bar between the orange and green segments.

3 sibs on Chromosome Browser to All

Chr 15 part 8

So for this try, the green represents the DNA that the siblings Lorraine, Richard and Virginia got from their Pouliot grandmother and the orange represents the DNA that each sibling got from their LeFevre grandfather.

Just to confuse things – a completed chromosome 15 map

Here is a completed Chromosome 15 that I did previously. In the version below, I started more on the right and worked my way to the left. That left blanks on the left that I was able to fill in by the actual cousins. Note that the colors are relative and are reversed for the Pouliot and LeFevre grandparents which I have labelled on this Chromosome Map:

Completed Chromosome 15 Map for 3 Siblings
Completed Chromosome 15 Map for 3 Siblings
what about the paternal side of the map?

The paternal side is mapped out, but I have no reference testers. These testers would ideally be 2nd cousins that are related on only one paternal line. I only need one of these 2nd cousins to identify one grandparent. Then the leftover grandparent belongs to the other side due to process of elimination. There are already likely people that have tested at AncestryDNA, but due to lack of a chromosome browser there, I don’t have where the matches are. For now I will leave them as colors or I can call them paternal grandparents 1 and 2. The actual paternal grandparents are Edward Butler (b. 1875) and Lillie Kerivan (b. 1874).

My Wife’s DNA

The DNA represented in the map above comes from my father in law’s grandparents. However, for my wife, this represents the DNA that she got from 4 of her paternal great grandparents. How could I map that out for her?

Recombination

The short and simple answer is this: My wife got her DNA from her 2 parents. That is a given. So she, like her father, Richard, has a maternal and paternal side. She will have a similar map as her father. However, now her paternal side will have her father’s 4 (or in this case 3) grandparents all on one chromosome. To make room, something has to give.

Completed Chromosome 15 Map for 3 Siblings
Completed Chromosome 15 Map for 3 Siblings

Here is Richard on the middle line. Note that he only received DNA from one of his paternal grandparents. As my wife got all her paternal DNA from her father (sounds obvious, but still worth stating), she will potentially only get DNA from 3 out of 4 of her great grandparents. Here I am borrowing a Figure from a very helpful blog called Segments: Bottom-Up:

segments greatgrandparents

In that Segmentology Blog, Chromosome 5 is used as an example. Here all the great grandparents are represented. Unfortunately, I have not tested 2 of my wife’s siblings. If I had, then I would have the first line which indicates her grandparents (in this case on her paternal side). The second line of the image above, shows in a generic way, the new crossovers that my wife could have for her great grandparent level.

My wife and her 2 aunts

Here is how my wife looks compared to her 2 aunts at gedmatch compared to those Aunts’ Chromosome 15 map. I won’t show the match to her father as she matches him in all places.

Marie Chr 15

Completed Chromosome 15 Map for 3 Siblings

From this, I take away that my wife matches her 2 Aunts on their maternal side. The gedmatch match between my wife and her Aunt Lorraine shows a break at 31 which corresponds to Aunt Lorraine’s maternal side. Likewise my wife’s second match with her Aunt Virginia starts at 60 which corresponds with Aunt Virginia’s maternal start of her switch from Pouliot DNA to LeFevre DNA. When I merge these 2 results together, it looks like the Chromosome map for Richard, above with a crossover break at 35. This makes sense, as my wife got her paternal DNA from her dad. If I was making a Chromosome map for my wife, it would include her 2 great grandparents: Martin LeFevre b. 1872 and Emma Pouliot b. 1874. Her Chromosome 15 Map would look like her father’s up to location 95. After that point it may also be the same as her father’s, but I don’t believe that I can prove that.

It is beginning to look like there may have been no recombination for my wife on Chromosome 15. So far, we have not seen any room in Marie’s DNA for the purple paternal DNA that I mapped out for Richard above.

Enter cousin John

Recently, my wife and I contacted her cousin John at AncestryDNA. He kindly uploaded his DNA to gedmatch. I said that I would use his DNA for research. Then I thought, “Now how am I going to use his DNA for research?” Here is one way. We will look to see how cousin John matches his Uncle and 2 Aunts at Chromosome 15.

John Chr 15

These red and yellow show us that Cousin John likes to eat at MacDonalds. Not really. It does show:

  • coverage of the entire Chromosome 15 from position 18 to 100.
  • one large match with Richard. This would correspond to Richard’s paternal (Irish) side
  • the match with Lorraine could correspond with her paternal side also in the purple area on my Chromosome 15 map above.
  • The 2 matches with Virginia could also be on her Paternal (Irish) side in the blue and purple segments
  • If I were to make a Chromosome 15 map for cousin John, it would be more complete than my wife’s. It would be filled in with 2 great grandparents on his father’s father’s side.

I think I will make a great grandparent Chromosome 15 Map for my wife and her cousin John, but only because this is my 50th genetic genealogy blog. This map will just be for my wife and cousin John’s Paternal side of their Chromosome 15.

Map John Marie

It is a somewhat unusual chromosome map as there are only 2 great grandparents mapped for each cousin. My wife inherited the DNA from her dad’s maternal grandparents  Her cousin John inherited his DNA from his dad’s paternal grandparents. The part in the upper right corner should probably been left blank as I have only implied Pouliot DNA there.

further deductions

I have shown that it looks like my wife matches her dad on his Maternal Side. It looks like my wife’s cousin John matches his Uncle and 2 Aunts on their Paternal sides. Remember, I am talking about great grandparent matches, so I am going back a bit. The question is, should my wife match her cousin John on Chromosome 15? I would say no. Let’s look. Here is my wife’s matches in the area of Chromosome 15 down to a level of 3 cMs:

Marie and John

As you can see, there is no Chromosome 15 match. From that I can imply, but not prove, that my wife’s Chromosome 15 after position 95 is the same as her father’s and that she inherited her father’s mother’s Chromosome 15 intact.

To Recombine or not to recombine?

The smaller Chromosomes have less of a chance of recombining.  Chromosome 15 has 100 cMs which means on average there should be exactly one crossover per Chromosome 15. Lorraine had one crossover on each of her Chromosomes 15 (maternal and paternal). Richard had 2 maternal crossovers and no paternal crossover so he meets the average. Virginia was an overachiever with 2 maternal and one paternal crossover for an average of 1.5 crossovers. My wife’s father inherited his father’s Chromosome 15 intact, so had no recombination there. Likewise there may have been no recombination from Richard down to my wife on this chromosome.

Summary and Conclusions

  • Kathy Johnston’s method of DNA analysis worked well on my father in law and 2 siblings to find the DNA they inherited from their grandparents who were born between 1872 and 1875.
  • This method worked especially well for the maternal side as there were reference points aka my father in law’s maternal cousins who had tested for DNA. For these segments with matching cousins, I could assign specific grandparents which contributed to my father in law and 2 siblings’ DNA.
  • The segments that my father in law’s family inherited from their grandparents’ Paternal Irish side is defined and in place. However, those segments are awaiting specific names. Once further testing is done or existing testing is uploaded to gedmatch.com, then these names should be made clear.
  • This exercise on Chromosome 15 may be repeated for the other chromosomes.
  • This exercise showed two instances where recombination did not take place and another instance where it probably did not take place.
  • I would know more about my wife’s DNA if I had 2 more siblings’ DNA results.
  • I have been neglecting my wife’s DNA results as I had other test results from her older relatives. I need to update her FTDNA and gedmatch.com matches. This may give more clues on how she inherited her great grandparents’ DNA from her father.
  • A cousin who has tested was used to triangulate between the 3 siblings and my wife to check the work.
  • Based on the results of the 3 siblings Chromosome Mapping, maps can also be made for the children of these siblings. For the children, the mapping would show which great grandparents they received their DNA from.

My Father In Law’s Autosomal DNA: Separating the LeFevres from the Pouliots

It’s been a while since I’ve looked at my Butler father in law’s autosomal DNA, so it’s time to look at it in a blog. Richard descends from an Irish father and a French Canadian mother. Richard has many large matches with many with French Canadian ancestry. In comparison, he seems to have smaller and fewer matches on his Irish side. This is probably due to several reasons:

  • The French Canadians have been around for many hundreds of years in North America.
  • Their descendants have spread throughout the region and many migrated to Massachusetts where Richard is from.
  • Many of these early French Canadians were intermarried. This tends to increase the amount of shared DNA among cousins.
  • The numerous French Canadian descendants perhaps were more likely to take DNA tests.
  • Conversely, the Irish relatives tended to emigrate later in time.
  • These Irish descendants seem less likely to have taken DNA tests.

Richard’s Known Matches – French Canadian

Richard has 2 pairs of known matches with cousins of French Canadian ancestry (other than my wife). They are:

  • 2 First cousins – They are on his mother’s (LeFevre) side
  • 2 Second cousins – They are also on the mother’s side but one generation up. The common ancestor is Pouliot. Here is a diagram of Richard’s mother’s side:

Pouliot LeFevre Diagram

My Confusion

I looked at these matches and wondered how I would be able to sort out the LeFevres and the Pouliots. This was confusing as the LeFevre line had Pouliot in it.

The Easy Answer

The easy answer is there is no easy way to pull the 2 apart with what I had. This is because at the first cousin level, it is not easy to pull out one family. If you think about it, your first cousins share 2 grandparents with you. This was the case with Richard’s 2 first cousins also. As they are on the mother’s side, they are useful for determining whether matches are on the Butler or LeFevre (Paternal or Maternal) side, but not a whole lot more. But that is quite a bit. This is a way of phasing your results. This also separates the French Canadian matches from the Irish matches.

Looking for more than can be found in a relationship can be frustrating and confusing and that was where I was a while back. I have found that it is usually good to keep it simple – especially when figuring these things out. The problem was I was comparing apples and oranges. Or in this case 1st cousins and 2nd cousins. This is why it is sometimes suggested that a second cousin is a good choice for testing.

The Pouliot Second Cousins

As mentioned above, the Pouliot second cousins represent all the Pouliot DNA shared. On the FTDNA Chromosome Browser Richard’s DNA shared with his 2 Pouliot 2nd cousins looks like this:

Butler Pouliot Chromosome Browser

From the image above, I gather a few things:

  • This is a map of the DNA that Richard received from his Pouliot great grandfather (and Fortin great grandmother) down from his Pouliot grandmother.
  • As this represents the DNA from Richard’s grandmother, it would theoretically cover about one half of his chromosome browser. This would be the amount of DNA that he actually did get from his grandmother as compared to how he matches his two 2nd cousins.
  • Richard’s theoretical amount of DNA he got from his grandmother would cover half of the browser because the browser contains both paternal and maternal matches.

Add in the 1st Cousin

I’m only adding in one LeFevre 1st cousin as the other one didn’t test at FTDNA. Here the first cousin will be in green.

French Canadian to Richard in Browswer

From looking at the above, I observe the following:

  • The green area represents Richard’s maternal side as shown through a match with a maternal cousin.
  • This green represents LeFevre on Richard’s parent level.
  • About one half of his green match represents LeFevre and one half represents Pouliot on the grandparent level.
  • Going further up the ancestor line the green represents every other ancestor of Richard’s mother. This would be French Canadians.
  • Richard got a full chromosome from his mother, so all the DNA received from his mother would fill the above chromosome browser.
  • There are areas on Chromosomes 1, 13 and 16 where Richard’s green LeFevre cousins matches overlaps with his matches from his Pouliot cousins. These areas likely represent where the LeFevre cousins match the Pouliots. This would mean that in this area of the LeFevre cousins’ chromosomes they got their DNA from the Pouliot side. I know that I said above that it was not possible to sort out what part of the LeFevre DNA was from Pouliot, but from looking at the Chromosome Browser above, it appears that it is possible. More on this later.
  • Areas where there are breaks in the matches or where the matches go from the LeFevre cousin to the Pouliot cousins likely indicate Richard’s crossover points. These are the points where the DNA he received changed from one [maternal in this case] grandparent to another. That is, the DNA he actually received went from his LeFevre grandfather to his Pouliot grandmother.
  • As the LeFevre cousins and Richard both descend from LeFevre sisters, they share X Chromosome matches. Both those sisters got their X Chromosomes from their 2 parents. Those 2 parents were LeFevre and Pouliot.
  • Due to the X inheritance patterns there can be no X Chromosome matches between Richard and his Pouliot 2nd cousins. Richard did receive Pouliot X Chromosomes from his mother’s mother. But Richard’s cousin did not as there is no X Chromosome passed down from father to son.

Triangulation – Thinking In Three Dimensions

Triangulation is when 3 or more people all get their DNA from the same ancestor and all match each other. Our best shot at finding this is at the right hand side of Chromosome 1. It looks like these 3 people who match Richard should match each other. Two are siblings, so that is a given. Here is how Richard’s 4 cousin matches look like at Gedmatch.com:

Richard Gedmatch Chr 1

You will have to switch gears a bit here from the FTDNA browser. In this browser, the different colors stand for the size of the match. Here, #1 and #2 are the Pouliot 2nd cousins. #3 and #4 are the LeFevere 1st cousins. #4 was the cousin that didn’t test at FTDNA. As expected, in the area where the 4 cousin matches are stacked on top of each other, they also match each other. At this close of a match, they almost have to. The only other option would be if they matched somehow on Richard’s paternal Irish side, which would be unlikely. This means that the 5 cousins triangulate and they have as a common ancestor their great grandfather Pouliot. Another interesting thing about Richard’s Chromosome 1 is that with just 4 maternal cousins, he has much of his chromosome mapped out – at least the maternal side of it.

 

 

 

 

Butler YDNA

This blog is not about all Butler YDNA, but about my father in law Richard’s YDNA. His results came in this week, so I thought I’d write a little about them. As he had 10 children, I thought that they might be interested.

Butler Genealogy

The Butlers are Irish. They are believed to come from the Kilkenny area. However, the documentation for that is not the best. Michael Butler was b. in Ireland around 1810. His son, Edward was b. in the 1830’s and made his way to the New World. He likely arrived in St. John, New Brunswick where he married Mary Crowley in 1855. I mention more details in my Blog on the Butler Brick Wall.

Deep Roots of the Butlers and Family Lore

My wife says that Butler is a Norman French name. She says the Butler name came from the fact that they were wine tasters. According to Ancestry.com:

Butler Name Meaning

English and Irish: from a word that originally denoted a wine steward, usually the chief servant of a medieval household, from Norman French butuiller (Old French bouteillier, Latin buticularius, from buticula ‘bottle’). In the large households of royalty and the most powerful nobility, the title came to denote an officer of high rank and responsibility, only nominally concerned with the supply of wine, if at all.

I had been a little skeptical about the family lore and figured that the Butler YDNA would be typically Irish which is R1b. According to Family Tree DNA:

R1b, which originated in western Europe, is the most common Y-DNA haplogroup among Irish men, at a frequency of about 81.5%. I1 is the second most common with 6%, followed by I2b at 5%, R1a at 2.5%, and E1b1b at 2%. G2a is found in only about 1%. Also rare are I2a (1%) and J2 (1%).

So What Did the Results Show?

I was wrong. According to FTDNA my father in law is I-M223. According to FTDNA:

I-M223 was known as I2b1 and is now known as I2a2a by ISOGG

ISOGG is the International Society of Genetic Genealogists. I’m not sure if that means that our Butler is in the 5% or 1% group in Ireland. However, they are either quite rare or very rare there. So I signed up my father in law for the Butler YDNA project and also the I-M223 Project at FTDNA. At the I-M223 project, they put him in the group with others that are fairly close matches. Three have the name Butler and one has the name Whitson. That makes me feel like we are on the right track. It is not unusual to have other surnames match on the YDNA line. However, it is better to not be in the minority.  The FTDNA group further put my father in law Richard into this curious category:

1.2.1.2.1.1.1.1- M223>…>L701>P78>S25733>A427: test I-M223 SNP Pack or I-M223 SNP Pack or S23612

This is a group with a lot of numbers. These first numbers probably went back to when someone could tell there was a certain signature in the YDNA results, but all the SNP tests weren’t developed yet. The second numbers are the SNP tests that the administrator thinks Richard would pass if he were to take them all. That is good, because it puts him several steps down the SNP tree. The last part is what the administrator wants the tester to do. One is to take a test that will test several SNPs. The other is to test for a specific SNP. In this case, the SNP is S23612.

Origins of the I-M223 Haplogroup

The I-M223 Haplogroup came into existence about around 17,600 years before present (ybp). Give or take a few thousand. The A427 branch is much more recent at 5,200 ybp. According to one YDNA Butler match to Richard, he feels that the origin of this branch of Butler that didn’t test positive for S23612 was in England and before that Germany. Some information from the Eupedia website also mentions that the L701 branch may have arisen from the Goths. I can imagine a stimulating dinner conversation with the Butler family: “So, I hear that the Butlers are descended from the Goths.” “What…???? I thought that we were descended from the Normans”. Who knows, maybe the Goths moved into France at some point and mixed with the Normans. Or they could’ve moved from Germany to England where the Normans were and then made their way to Ireland. I’m sure that there are many possible scenarios.

More Recent Connections

Two of the more recent Butler YDNA  matches to Richard had roots in Ireland, so that makes sense. One had his earliest known Butler ancestor from the border of Laois and Kilkenny County.  That is shown by a blue balloon below. That match had a GD or Genetic Distance of 4. The other was from Wexford and had a GD of 2 with Richard.

Kilkenny Wexford

This shows some likelihood of having a common ancestor within a certain number of generations when your match has a GD of 4:

4 GD Butler

Here is a match with a GD of 2. Note the differences in Percentages.

2 GD Butler

Kilkenny or Wexford?

The 2 GD match who had a mariner Butler ancestor in Wexford is interesting for 2 reasons. When Edward H Butler, the son of Edward Butler, the immigrant ancestor died in 1925, he listed his father as being born in County Wexford, Ireland. The second reason is that the photo we have of the immigrant Edward Butler shows him in a sailor outfit.

edwardh

Compare the above with the image of sailors our helpful YDNA Butler relative sent:

Sailor Outfit

Perhaps Edward Butler had mariner background in Ireland or perhaps he was in the Navy in the American Civil War.

Two Death Certificates

Here is Edward Butler’s Death Certificate from 1915 showing that he and his two parents were born in Kilkenny

Edward Butler Death 1915

Ten years later in 1925, his son, Edward H Butler died and recorded that his father was born in County Wexford, Ireland. Why had his birthplace changed in 10 years?

Edward H Death 1925

So although the YDNA results don’t clarify the death certificates, they are consistent with where the death certificates say the Butlers were from!

 

 

Uncle Naffy, DNA, and the Butler Brick Wall

This blog will be a departure from my usual Frazer DNA Blogs. This is about my father in law’s Butler line. I plan to add some genealogy also. I have been working on the Butler line since about 18 B.D. That is 18 years before I got involved with DNA. This line has been a mystery. As far as we know, the first Butler of the family to come to the US was Edward Butler.

What Did I Know About Edward Butler?

edwardh

Here is a photo, believed to be Edward himself. I’m not familiar with the type of clothes he is wearing or when this may have been taken. My wife’s Aunt had done some research on the Butlers, so that was helpful. This research was done back in the day before computers. According to a Death Certificate Aunt Lorraine had from 1986, Edward Butler died 1915 and was aged 80. His parents were Michael Butler and Margaret Croke. They were all said to have been born in Kilkenny, Ireland. His wife was Mary E. Crowley. She died in 1905 at age 51. She was born in St. John, New Brunswick. Her father was Florence Crowley and her mom was Ellen Donavan. I had never heard of Florence as a man’s name before. Based on the death certificates, Edward would’ve been born about 1835 and Mary about 1854.

The Chicago Connection

This family had at least 2 sons: George and Edward Henry Butler. Both of these sons moved to Massachusetts with the parents and were said to have been born in Chicago. However, I could not find any record of the family in Chicago. Perhaps some will show up eventually.

A Possible Cincinnati Connection?

I had found some census information for families that looked similar to the family I was looking for, but something was always a bit off. The best census I could find was in Cincinnati. Here is the 1860 Census for the 17 Ward of Cincinnati taken on June 6th.

Cincinnati 1860

Here we have a young Butler family. The husband and wife were 25 and 23. The family’s net worth appeared to be $20 and the father was a laborer who couldn’t read or write. What I especially liked was the the father was born in Ireland and the wife was born in New Brunswick. New Brunswick was pretty specific. The enumerator could’ve written Canada but didn’t. I knew from Mary Butler’s death certificate that she was from St. John, New Brunswick. However, there were many problems. I had never heard of the family living in Cincinnati. I had never heard of the family having daughters. From this census Mary would’ve been born around 1837. Based on her death certificate, she should’ve been born around 1854. So I considered what I had found, but kept other options open.

Here is the same family in 1870 in the 3rd Ward of Cincinnati (taken from the FamilySearch website).

Cincinnati 1870

Now Mary and Julia are said to be born in Mass. Ellen is not in the house. Edward is said to be a citizen.

The Mellie Connection

After his wife, Mary (Crowley) Butler, died in 1905, Edward went to live with the Mellies on Clinton Street in Newton. Here is the 1910 Census.

1910 Census Mellie

Mary was actually Mary Butler. Her parents were James Butler and Mary and she was born in County Kilkenny. She married William Mellie in 1898 in West Newton. That could mean that James Butler was Edward Butler’s brother and seems to confirm the Kilkenny connection for the Butlers. Although this gave me more Butler family and a possible reason the family moved from Chicago to Boston, it didn’t answer many other questions. I was determined to find out more about Edward Butler, but it seemed like he was just as determined to keep his family history hidden.

The Crowley Family

At this point, I gave up on the Butlers and decided to focus on the Crowley family. They had been in North America apparently longer than the Butler family. Very often the female side keeps the family connections and history more than the male side.  Turns out the male name of Florence was not as unusual as I had originally thought. Also I found out that many of the Crowleys from Mary’s generation made their way to Boston. As I read about their lives, it is as if I was  seeing their lives in fast motion. This is because often I find their births, marriages and deaths in a short period of time. Sometimes I see their young children dieing. I see their lives in the Census in 10 year snapshots. I picture where they may have lived in Boston. Sometimes family invited other families to live with them in crowded conditions. One Crowley family member spent quite a bit of time at the Danvers hospital and apparently suffered from mental illness. I’m sure this put a strain on the family.

The DNA Phase

Late in 2014, I sent a Family Tree DNA (FTDNA) kit down to Florida for my father in law to take. This particular test is called the Family Finder. It actually tests your chromosomes and shows resulting matches to other people. The catch is that you don’t know how you are related to these other people. It could be on any branch of your ancestors and then any branch coming down in any direction. Many of those directions you may not even know about. Some of my father in law’s cousins had tested already which I was to find out. These were on his mother’s French Canadian side and not the father’s Butler side. If you are related to one French Canadian, you are related to many. So many of these matches crowded out the Butler matches which seemed few and far between.

I uploaded my father in law’s results to gedmatch.com. This is a place where you can find other matches from other testing companies. I took the results and put them in a spreadsheet. I grouped these by segments of the 22 Chromosomes. Further I grouped these matching segments into Triangulation Groups. These are groups where matches match each other. When this happens there is most likely a common set of ancestors in the group. Then I had to update the results when new matches came in.

Uncle Naffy

On April 14, 2015, I emailed “unclenaffy” (his email name). I noticed a few days previously he had a large match to Richard, my father in law at FTDNA. I included Richard’s ancestry chart. Uncle Naffy got back to me right away, “I dont have a family tree yet but i can tell you that Crowleys are related to me. I am living in Saint John where they had lived and still do live. My Aunt Mary Lou Reid knows the family connections so ill tell you later more.…” Well this had me interested. Then on April 16 Uncle Naffy wrote, “I have more news for you. I have chatted with my aunt mary lou reid and she has info on how i might be related to Butler. My GGgrandmother was a Butler from Cincinnati in 1870s and moved to New Brunswick to live with family” This was even more interesting as I never recalled mentioning Cincinnati to Uncle Naffy. Uncle Naffy further told me that his grandmother’s father was Thomas Joseph Murphy. He married a Mary A Butler. She was the one that moved from Cincinnati to live with family. Uncle Naffy filled me in further, “Rumour has it that when they were due to marry at a church in saint john, well it was during the Great Saint John fire of 1877 and the church burnt down .” I was able to find that marriage in the French Canadian Druin records. I wrote back:

Murphy Butler Marriage St. John

So that was enough to break down one of the Butler brick walls. Uncle Naffy had mentioned St. John, Cincinnati, Crowley and Butler. I also had the name of a Church in St. John where at least some Irish married. I no longer felt like I was searching for a needle in a haystack. Now it was more like looking for a pitchfork.

Finally this Summer, I made it up to the New England Historical and Genealogical Society (NEHGS) Library in Boston to look up marriages. There, I went winding through microfilm. Fortunately, there was an index on the film. Once I figured it out, I found an entry for Butler/Crowley. That was encouraging. Then I found the entry which, although it was legible as to quality, contained some of the worst 19th century handwriting I had ever seen. I took a photo of it on my phone. Here it is.

butler crowley marriage st john

It’s a good thing there was an index. In case you can’t decipher it, I gather that Edward Butler and Mary Crowley were both from St. John and got married May 1, 1855. It appears that someone named Quinn performed the ceremony. Edward Butler gave his mark – remember he couldn’t read or write. There were 2 witnesses: a Walter (someone) and Elizabeth Scott.

So DNA pushed our written record knowledge back 50 years from when Mary Crowley Butler died in 1905. She was considerably older than her stated 51 years when she died. This had thrown me off considerably also.

What I’ve Learned

  • Don’t trust death records. I knew this before but had to relearn it.
  • St. John had a large Irish immigrant population. I didn’t know this before.
  • The Butler/Crowley wedding did in fact take place in St. John. It is likely that Edward Butler came to shore here or nearby.
  • The Butler family was quite mobile moving from St. John, to Cincinnati. Then apparently to the Chicago area and finally to the Boston area.
  • DNA does not solve the problems directly but gives good clues and confidence for areas to look. This is especially true if DNA matches help out a bit and give family information. (Thanks Uncle Naffy.)